Lecture 2

Part E

Selections -
Laws of Logical Operators, Precedence of Logical Operators

Logical Law: Negation of Relational Operation

Relation	Negation	Equivalence	
$i>j$	$!(i>j)$	$i<=j$	
$i>=j$	$!(i>=j)$	$i<j$	
$i<j$	$!(i<j)$	$i>=j$	
$i<=j$	$!(i<=j)$	$i>j$	

Test Inputs:

$17 \leq 3$

$$
!(\bar{c}<=\bar{J}) \equiv \bar{\iota}>\bar{J}
$$

${ }^{7} \bar{i}>\bar{j}$

Two-Way If-Stmt: Handling Errors

```
public class ComputeArea {
    public static void main(String[] args) {
        Scanner input = new Scanner(System.in);
        System.out.println("Enter a radius value:");
        double radius = input.nextDouble();
        final dquble PI = 3.14159;
        if radius < 0
        System.out.println("Error: Negative radius value!")
        System.out.println("Error: Negative radius value!")
    else { /* implicit: ! (radius < 0), or radius >= 0 */
```

Trace on
both sides \rightarrow radius
$-5>=0 \quad F$.
[double area $=$ radius $*$ radius $* P I ;$
System. out.println("Area is " + area);
input. close();
! (radius < 0)
! (ranker > $=0$) radius <

$$
\equiv \text { radius }>=0
$$

Logical Laws: DeMorgan

$\left.\begin{array}{cc||c|cc}B_{1} & B_{2} & ! & \left(\begin{array}{lll}B_{1} \quad \& \& & B_{2}\end{array}\right) & !\left(B_{1}\right)!\end{array}\right)!B_{2}$

DeMorgan for Conjunction

$B_{1} \quad B_{2}$	$!\left(\underline{B_{1}}\right.$ (11) $\left.\underline{B}_{2}\right)$! B_{1} ¢ \& ! B_{2}	DeMorgan for
trus (rue)	false	false	Disjunction
(एue) false	false	false	
false (true)	false	false	
false false	true	true	

DeMorgan Law of Conjunction: Example (1)
\square
else \square

- When is Action 2 executed?
$i<0| | i>10$

$$
!(0<=\bar{i} \& \& \quad \bar{\tau}<10) \equiv \frac{1(0<=\bar{c})}{} \quad 1 \left\lvert\,!(\bar{i} \leq=10) \equiv \begin{gathered}
0>\bar{\tau} 11 \\
\bar{i}>10
\end{gathered}\right.
$$

DeMorgan Law of Conjunction: Example (2)

-When is Action 1 executed?

true (ie., i >= 0 || true)
! ($\overline{i<0} \& \&$ false)
III

$$
!(\tau<0) \|!(f a l s e)
$$

111

$$
\tau \geqslant 0 \| T
$$

DeMorgan Law of Conjunction: Example (3)
\rightarrow never execherod.
i.
-When is Action 1 executed?

- When is Action 2 executed? true (ie., i $>=0$ || i <= 10)

$$
\begin{aligned}
\rightarrow & !\left(\underline{\tau}<0 \quad \& \& \frac{\bar{\tau}>10)}{}\right. \\
\equiv & !(\bar{\tau} 0)\|!(\bar{\tau}>10) \equiv \tau>=0\| \bar{c}<0
\end{aligned}
$$

DeMorgan Law of Disjunction: Example (1).
\square
ese
When is Action 2 executed?
$0<=i \& \& i<=10$
$!$ ($\overline{\underline{\tau}<0}$ (II) $\overline{\tau>10}) \equiv!(\bar{\tau}<0) \& \&!(\tau>10)$
$\equiv \quad \bar{c} \geqslant 0 \& \& \quad \bar{c} \leqslant 10$

Action 1
Acton 2.

DeMorgan Law of Disjunction: Example (2)
-When is Action 1 executed?

- When is Action 2 executed? ' false (ie., i $>=0$ \&\& false)
! ($\tau<0$ || twi $) \quad \bar{\imath}<0 \quad \|$ true
\downarrow Demagan
? Exercise
(F)

DeMorgan Law of Disjunction: Example (3)

- When is Action 1 executed?
- When is Action 2 executed? false (ie., i >= 10 \& \& i < 10)
III Exercise

Lecture 2

Part F

Selections -
Two-Way vs. Multi-Ways If-Statements, Nested If-Statements

Two-Way If-Statement without else Part
$\left.-2 h_{0}-1\right)(E)$

System. out.println("Area for the circle of is " + area);
Console
Area for Mure is. -

Console
Area for circle is .-

System. out.println("Area for the circle of is " + area); else \rightarrow ! (radius $\geqslant 0$).

Test Inputs:

$$
\text { radius }=10
$$

$$
\text { radius }=-23
$$

Console
\square

Console
\square

Compound If-Statement: Implicit Conditions

int (x = input.nextInt();
int (x = input.nextInt();
int }y=0;
int }y=0;
if (}x>=0)
if (}x>=0)
\#System.qut.println("x is positive");
\#System.qut.println("x is positive");
Tif (x>10)}{xy=x*2;
Tif (x>10)}{xy=x*2;
->else if (x<10) { y = x % 2; }
->else if (x<10) { y = x % 2; }
x Clse { y = x* x; }
x Clse { y = x* x; }
else { /* x < 0 */
else { /* x < 0 */
System.out.println("x is negative");
System.out.println("x is negative");
if(x<-5) { y = -x; }
if(x<-5) { y = -x; }
}
}

Test Inputs:

Exercise:
Trace on paper and Reneger.

Multi-Way_If-Statement with else Part

Test Inputs: score $=83$ score 71 score = 59

Multi-Way_If-Statement without else Part

score lettedrade letterGuade letfertrade

```
String letterGrade = "F")
if (score }>=80.0)(E
XletterGrade = "A";
}
else if (score >= 70.0) {
X letterGrade = "B";
}
else if (score >=60.0) {
XletterGrade = "C";
```

\}

Test Inputs:

score $=83$
score $=71$
if (score $>=80.0$) $\{$
\times letterGrade = "A";
score $=59$
\}
else $\{$
if (score $>=70.0$) \{
\times letterGrade = "B";
\}
else \{

$\equiv \rightarrow$ if (score $>=60.0$) \{
(letterGrade = "C";
\}
\rightarrow else \{
\rightarrow /* do nothing */
$\rightarrow\}$
$\rightarrow\}$

Lecture 2

Part G

Selections -
Overlapping vs. Disjoint Conditions, Single If-Stmt vs. Multiple If-Stmts

Overlapping vs. Non-Overlapping Intervals

$$
\begin{aligned}
& i>=3 \\
& i<=8
\end{aligned}
$$

(5).

$$
\begin{aligned}
& i<=3 \\
& i>=8
\end{aligned}
$$

non-overlappray.

Single If－Stmt vs．Multiple If－Stmts：Overlapping＿Conditions
if（i＞＝3） $\mathbb{T}_{\text {System．out．println（＂i is }>=3 ") ; ~\}}$
Selse if（i＜＝8）\｛System．out．println（＂i is $<=8 ")$ ；
Console
［ is $>=3$
－adopendent if－stants？
\qquad ；\}

Console

$$
\begin{aligned}
& \text { こ~ }>=3 \\
& \text { 亿心 }<=8
\end{aligned}
$$

Single If-Stmt vs. Multiple If-Stmts: Non-Overlapping_Conditions

Console

$$
\bar{c} \pi<3
$$

```
int i = 2i
```

int i = 2i
=if(i<= 3) {System.out.println("i is <= 3");}
=if(i<= 3) {System.out.println("i is <= 3");}
if(i >= 8)(G){ System.out.println("i is >= 8");}

```
if(i >= 8)(G){ System.out.println("i is >= 8");}
```

Console

$$
\bar{c} \lll=3
$$

Common Error: Multiple If-Statements with Overlapping_Conditions

3 if-statpmers.

Overlapping_Conditions: Exercise (1)
Does this program always print exactly one line?

Overlapping Conditions: Exercises (2,3).

Does this program always print exactly one line?

```
if(x<<0) {println("x<0"); }
else if (0 <= x && x < 10) { println("0 <= x < 10"); }
else if((10<= x && x < 20) { println("10<= x < 20"); }
else if) }x>=20) { println("x >= 20"); 
```

This simplified version is equivalent:

```
if x<0 { println("x<0"); }
else if (X<10) { println("0<= x < 10"); }
else if(x<20) { println("10<= x< 20"); }
else { println("x >= 20"); }
```

$!(x<0) \& \& x<10!(x<0) \&!(x<10) \& \& x<20$ $\equiv x \geqslant 0 \& \& x<10 \equiv x \geqslant 0 \& \& x \geqslant 10 \& \& x<10$

Lecture 2

Part H

Selections Scope of Variables

Scope of Variables: Method

```
public static void main(String[] args)
```

```
int (i) \(=\) input.nextInt();
System/out.println("i is "
if (i) \(>01\) \{
\(\therefore\) (i) \(=\) (i) 3; /* both use and re-assignment, why? */
\}
else
i i \(=\) (i) * -3 ; / * both use and re-assignment, why? */
System.out.println("3 * (i) is " + (i) ;
```


Scope of Variables: Branches

public static void main(String[] args)

Scope of Variables: Use of Variables from Other Branches

```
public static void main(String[] args)
```


Scope of Variables: Use of Variables Outside If-Stmt

Scope of Variables: Method Parameters \& Return Values

```
public class SumApp {
public static void main(String[] args) {
\tau=33S
    Mint (i)= input.nextInt();
```



```
    what Java rum trme doy
public class Utilities { J J J but you Mal nof
    public static int getSum(int }X\mathrm{ , int }X\mathrm{ ( ) \{ write 
    int result 三s*+
    return\mesult,て J
    } }
```

